The Use of Biodrying to Prevent Self-Heating of Alternative Fuel

Author:

Gajewska TeresaORCID,Malinowski MateuszORCID,Szkoda MaciejORCID

Abstract

Alternative fuels (refuse-derived fuels—RDF) have been a substitute for fossil fuels in cement production for many years. RDF are produced from various materials characterized by high calorific value. Due to the possibility of self-ignition in the pile of stored alternative fuel, treatments are carried out to help protect entrepreneurs against material losses and employees against loss of health or life. The objective of the research was to assess the impact of alternative fuel biodrying on the ability to self-heat this material. Three variants of materials (alternative fuel produced on the basis of mixed municipal solid waste (MSW) and on the basis of bulky waste (mainly varnished wood and textiles) and residues from selective collection waste (mainly plastics and tires) were adopted for the analysis. The novelty of the proposed solution consists in processing the analyzed materials inside the innovative ecological waste apparatus bioreactor (EWA), which results in increased process efficiency and shortening its duration. The passive thermography technique was used to assess the impact of alternative fuel biodrying on the decrease in the self-heating ability of RDF. As a result of the conducted analyses, it was clear that the biodrying process inhibited the self-heating of alternative fuel. The temperature of the stored fuel reached over 60 °C before the biodrying process. However, after the biodrying process, the maximum temperatures in each of the variants were about 30 °C, which indicates a decrease in the activity of microorganisms and the lack of self-ignition risk. The maximum temperatures obtained (>71 °C), the time to reach them (≈4 h), and the duration of the thermophilic phase (≈65 h) are much shorter than in the studies of other authors, where the duration of the thermophilic phase was over 80 h.

Publisher

MDPI AG

Subject

General Materials Science

Reference52 articles.

1. Life cycle assessment of the use of alternative fuels in cement kilns: A case study

2. Guidelines on Co-Processing, Waste Materials in Cement Production,2006

3. Insight on the Self-Ignition Behaviour of RDF Components;Vasconcelos,2014

4. Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel

5. Chemical consideration on spontaneous incineration accidents of refuse-derived fuels and exothermic reaction mechanism;Yasuhara;J. Jpn. Soc. Saf. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3