Experimental Study of Lithium Extraction in the Solid-Liquid Conversion of Low-Grade Solid Potash Ore

Author:

Cui Zihao12,Zhao Yanjun1ORCID,Zhang Yumeng13,Liu Jingjing2,Hu Yufei1,Hu Shengzhong4,Wang Qiang4

Affiliation:

1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China

3. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

4. Qinghai Zhonghang Resources Co., Ltd., Delingha 817000, China

Abstract

There are considerable reserves of low-grade solid potash resources in the shallow part of Mahai Salt Lake in the Qaidam Basin, and the lithium brine resources resulting from solid–liquid conversion and mining are quite abundant. The comprehensive utilization of these resources is an important and urgent problem. In this study, to fully utilize these resources, the shallow low-grade solid potash ore in Mahai Salt Lake was used for systematic simulated ore dissolution experiments, combined with geochemical and X-ray diffraction analyses. The following key results were obtained: (1) Most Li+ in the Mahai mining area was deposited on the soluble salt minerals in silt or clay, and the appropriate concentration of solvent can help to dissolve more Li+ and K+; (2) the saturation time of Li+ was longer than that of K+. Therefore, the dissolution time for the mine can be appropriately extended during the production process to dissolve more Li+; (3) the solid–liquid conversion aqueous solution mining method can separate the lithium part of clay deposits and is associated with salt rock in the brine, which is a potential lithium resource. These experimental results provide a theoretical basis for salt pan production.

Funder

Major Projects of occurrence law of low-grade solid potash in Qarhan salt lake in Qinghai Province and driving dissolution ore Liquefaction technology

State Key Research and Development Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3