Insights into the Evolution of Spermatogenesis-Related Ubiquitin–Proteasome System Genes in Abdominal Testicular Laurasiatherians

Author:

Ding Xiaoyue,Cao Li,Zheng Yu,Zhou Xu,He Xiaofang,Xu Shixia,Ren Wenhua

Abstract

During embryonic development in mammals, the testicles generally descend into the scrotum, making the testicular temperature 2–4 °C lower than the core temperature via heat exchange and clearance, and thus more beneficial for normal spermatogenesis. Failure to descend, known as cryptorchidism, carries a series of risks such as infertility and testicular cancer. However, some mammals have evolved abdominal testes while maintaining healthy reproduction. To explore the underlying molecular mechanism, we conducted comparative genomic analyses and functional assays on the spermatogenesis-related ubiquitin–proteasome system (UPS) genes essential to sperm formation in representative laurasiatherians. Here, positive selection and rapid evolution of spermatogenesis-related UPS genes were identified in the abdominal testicular laurasiatherians. Moreover, potential convergent amino acids were found between distantly related species with similar abdominal testicles and functional analyses showed RNF8 (V437I) in abdominal testicular species (437I) has a stronger ubiquitination ability, which suggests that the mammals with abdominal testes might exhibit enhanced sperm cell histone clearance to maintain sperm formation. This evidence implies that, in response to “cryptorchidism injury”, spermatogenesis-related UPS genes in the abdominal testicular species might have undergone adaptive evolution to stabilize sperm formation. Thus, our study could provide some novel insights into the reproductive adaptation in abdominal testicular mammals.

Funder

National Natural Science Foundation of China

National Key Programme of Research and Development, Ministry of Science and Technology

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3