Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System

Author:

Saoudi Abderrazek,Krim Saber,Mimouni Mohamed Faouzi

Abstract

This paper aims to search for a high-performance low-cost standalone photovoltaic water pumping system (PVWPS) based on a three-phase induction motor (IM). In order to control the IM, a fuzzy direct torque control (FDTC) is proposed in this paper for overcoming the limitations of the conventional direct torque control (CDTC). In fact, the CDTC suffers from several problems such as torque ripples, current distortion, and switching frequency variations. These problems can be solved with the proposed FDTC. To ensure high performance of the PVWPS, the reference torque is generated using a fuzzy speed controller (FSC) instead of a conventional proportional integral speed controller. In order to extract the maximum amount of power, the proposed maximum power point tracking controller is based on variable step size perturb and observe to surmount the weakness of the conventional perturb and observe technique. The performance of the proposed FDTC based on the FSC under variable climatic conditions is demonstrated by digital simulation using Matlab/Simulink. The obtained results show the effectiveness of the suggested FDTC based on the FSC compared with the CDTC in terms of pumped water, reduction in flux and torque ripple, diminution of losses, and decrease in the stator current harmonic.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soft computing approaches for photovoltaic water pumping systems: A review;Cleaner Engineering and Technology;2024-10

2. A review of modern techniques for efficient control of AC motors utilized in PV water pumping system;Irrigation Science;2024-07-31

3. A Simplified SVM-DTC Algorithm Based on Integral Derivative Sliding Mode Control for Electrical Machines;2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2024-04-27

4. Fuzzy MPPT Controlled Landsman Converter for Grid Tied PMBLDC Based Water Pumping System;2024 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS);2024-04-26

5. A New Direct Torque Control of an Efficient and Cost-Effective Traction System Using Two Squirrel Cage Induction Motors Feed by a Single Inverter;Electric Power Components and Systems;2024-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3