Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock

Author:

Zygmunt MarcinORCID,Gawin Dariusz

Abstract

The development of energy-efficient buildings and sustainable energy supply systems is an obligatory undertaking towards a more sustainable future. To protect the natural environment, the modernization of urban infrastructure is indisputably important, possible to achieve considering numerous buildings as a group, i.e., Building Energy Cluster (BEC). The urban planning process evaluates multiple complex criteria to select the most profitable scenario in terms of energy consumption, environmental protection, or financial profitability. Thus, Urban Building Energy Modelling (UBEM) is presently a popular approach applied for studies towards the development of sustainable cities. Today’s UBEM tools use various calculation methods and approaches, as well as include different assumptions and limitations. While there are several popular and valuable software for UBEM, there is still no such tool for analyses of the Polish residential stock. In this work an overview on the home-developed tool called TEAC, focusing on its’ mathematical model and use of Artificial Neural Networks (ANN). An exemplary application of the TEAC software is also presented.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3