Abstract
The ionospheric plasma density irregularities are known to play a role in the propagation of electromagnetic signals and to be one of the most important sources of disturbance for the Global Navigation Satellite System, being responsible for degradation and, sometimes, interruptions of the signals received by the system. In the equatorial ionospheric F region, these plasma density irregularities, known as plasma bubbles, find the suitable conditions for their development during post-sunset hours. In recent years, important features of plasma bubbles such as their dependence on latitude, longitude, and solar and geomagnetic activities have been inferred indirectly using their magnetic signatures. Here, we study the scaling properties of both the electron density and the magnetic field inside the plasma bubbles using measurements on board the Swarm A satellite from 1 April 2014 to 31 January 2016. We show that the spectral features of plasma irregularities cannot be directly inferred from their magnetic signatures. A relation more complex than the linear one is necessary to properly describe the role played by the evolution of plasma bubbles with local time and by the development of turbulent phenomena.
Funder
Ministry of Education, Universities and Research
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献