Gaussian Mixture Cardinalized Probability Hypothesis Density(GM-CPHD): A Distributed Filter Based on the Intersection of Parallel Inverse Covariances

Author:

Wang Liu1,Chen Guifen1,Chen Guangjiao1ORCID

Affiliation:

1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China

Abstract

A distributed GM-CPHD filter based on parallel inverse covariance crossover is designed to attenuate the local filtering and uncertain time-varying noise affecting the accuracy of sensor signals. First, the GM-CPHD filter is identified as the module for subsystem filtering and estimation due to its high stability under Gaussian distribution. Second, the signals of each subsystem are fused by invoking the inverse covariance cross-fusion algorithm, and the convex optimization problem with high-dimensional weight coefficients is solved. At the same time, the algorithm reduces the burden of data computation, and data fusion time is saved. Finally, the GM-CPHD filter is added to the conventional ICI structure, and the generalization capability of the parallel inverse covariance intersection Gaussian mixture cardinalized probability hypothesis density (PICI-GM-CPHD) algorithm reduces the nonlinear complexity of the system. An experiment on the stability of Gaussian fusion models is organized and linear and nonlinear signals are compared by simulating the metrics of different algorithms, and the results show that the improved algorithm has a smaller metric OSPA error than other mainstream algorithms. Compared with other algorithms, the improved algorithm improves the signal processing accuracy and reduces the running time. The improved algorithm is practical and advanced in terms of multisensor data processing.

Funder

Special Industrial Technology Research Project of Jilin Province

“Thirteenth Five-Year Plan” of Provincial Science and Technology of Education Department of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3