Lettuce Production in Intelligent Greenhouses—3D Imaging and Computer Vision for Plant Spacing Decisions

Author:

Petropoulou Anna Selini1ORCID,van Marrewijk Bart1ORCID,de Zwart Feije1ORCID,Elings Anne1ORCID,Bijlaard Monique1,van Daalen Tim1,Jansen Guido1ORCID,Hemming Silke1ORCID

Affiliation:

1. Business Unit Greenhouse Horticulture, Wageningen University & Research (WUR), 6708 PB Wageningen, The Netherlands

Abstract

Recent studies indicate that food demand will increase by 35–56% over the period 2010–2050 due to population increase, economic development, and urbanization. Greenhouse systems allow for the sustainable intensification of food production with demonstrated high crop production per cultivation area. Breakthroughs in resource-efficient fresh food production merging horticultural and AI expertise take place with the international competition “Autonomous Greenhouse Challenge”. This paper describes and analyzes the results of the third edition of this competition. The competition’s goal is the realization of the highest net profit in fully autonomous lettuce production. Two cultivation cycles were conducted in six high-tech greenhouse compartments with operational greenhouse decision-making realized at a distance and individually by algorithms of international participating teams. Algorithms were developed based on time series sensor data of the greenhouse climate and crop images. High crop yield and quality, short growing cycles, and low use of resources such as energy for heating, electricity for artificial light, and CO2 were decisive in realizing the competition’s goal. The results highlight the importance of plant spacing and the moment of harvest decisions in promoting high crop growth rates while optimizing greenhouse occupation and resource use. In this paper, images taken with depth cameras (RealSense) for each greenhouse were used by computer vision algorithms (Deepabv3+ implemented in detectron2 v0.6) in deciding optimum plant spacing and the moment of harvest. The resulting plant height and coverage could be accurately estimated with an R2 of 0.976, and a mIoU of 98.2, respectively. These two traits were used to develop a light loss and harvest indicator to support remote decision-making. The light loss indicator could be used as a decision tool for timely spacing. Several traits were combined for the harvest indicator, ultimately resulting in a fresh weight estimation with a mean absolute error of 22 g. The proposed non-invasively estimated indicators presented in this article are promising traits to be used towards full autonomation of a dynamic commercial lettuce growing environment. Computer vision algorithms act as a catalyst in remote and non-invasive sensing of crop parameters, decisive for automated, objective, standardized, and data-driven decision making. However, spectral indexes describing lettuces growth and larger datasets than the currently accessible are crucial to address existing shortcomings between academic and industrial production systems that have been encountered in this work.

Funder

Tencent

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3