Numerical Response of Owls to the Dampening of Small Mammal Population Cycles in Latvia

Author:

Avotins Andris12ORCID,Avotins Andris2,Ķerus Viesturs2,Aunins Ainars12ORCID

Affiliation:

1. Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Jelgavas Iela 1, LV-1004 Riga, Latvia

2. Latvian Ornithological Society, Skolas Iela 3, LV-1010 Riga, Latvia

Abstract

Strong numerical and functional responses of owls to voles in cyclic environments are well known. However, there is insufficient knowledge from the boreonemoral region in particular, with depleted populations of small mammals. In this study, we describe the dynamics of the small mammal population in Latvia from 1991 to 2016 and link them to owl population characteristics. We used food niche breadth, number of fledglings, and population trends to lay out the numerical response of six owl species to dampened small mammal population cycles. We found temporarily increasing food niche breadth in tawny and Ural owls. There were no other responses in the tawny owl, whereas the breeding performance of three forest specialist species—pygmy, Tengmalm’s, and Ural owls—corresponded to the vole crash years in Fennoscandia. Moreover, the populations of forest specialist owls decreased, and the change in the Ural owl population can be attributed to the depletion of small mammal populations. We found evidence of a carry-over effect in the eagle owl arising from a strong correlation of declining breeding performance with the small mammal abundance indices in the previous autumn. We conclude that dampening of the small mammal population cycles is an important covariate of the likely effects of habitat destruction that needs to be investigated further, with stronger responses in more specialized (to prey or habitat) species.

Funder

Teiči state reserve administration

Nature Conservation Agency

Latvian Environment, Geology, and Meteorology Center

Administration of Latvian Environmental Protection Fund

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3