Numerical Simulation of the Hot Rolling Process of Steel Beams

Author:

Pérez-Alvarado AlejandroORCID,Arreola-Villa Sixtos Antonio,Calderón-Ramos IsmaelORCID,Servín Castañeda RumualdoORCID,Mendoza de la Rosa Luis Alberto,Chattopadhyay KinnorORCID,Morales Rodolfo

Abstract

The complete rolling schedule (25 passes) of steel beams in a mill was simulated to predict the final beam length, geometry of the cross-section, effective stress, effective plastic strain and rolling power for two cases; the first case corresponds to the hot rolling process assuming a constant temperature of 1200 ∘C. The simulation of the second case considered the real beam temperature at each pass to compare the results with in-plant measurements and validate the numerical model. Then, the results of both cases were compared to determine the critical passes of the process with high peaks of required power, coinciding with the reports at the mill. These critical passes share the same conditions, high percentage of reduction in cross-sectional area and low beam temperature. Additionally, a potential reduction of passes in the process was proposed identifying passes with low required power, minimal reduction in area of cross-section and essentially unchanged geometry. Therefore, it is reasonable to state that using the present research methodology, it is possible to have a better control of the process allowing innovation in the production of profiles with more complex geometries and new materials.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3