Alleviating Effects of Black Soybean Peptide on Oxidative Stress Injury Induced by Lead in PC12 Cells via Keap1/Nrf2/TXNIP Signaling Pathway

Author:

Li Ning,Wen Liuding,Li Tiange,Yang Huijie,Qiao Mingwu,Wang Tianlin,Song Lianjun,Huang Xianqing,Li Mingming,Bukyei ErkigulORCID,Wang Fangyu

Abstract

Many researchers have found that Pb exposure can cause oxidative stress damage to the body’s tissue. Black soybean peptide (BSP) has a variety of physiological functions, especially in terms of oxidative stress. Nevertheless, the mitigation function of BSPs on Pb-induced oxidative stress damage in PC12 cells has not been clearly defined. In this study, cell viability was detected by CCK8. Oxidative stress indicators, such as ROS, GSH/GSSG, MDA, SOD, CAT, GPx, and GR, were tested with biochemical kit. Protein expression of Keap1, Nrf2, and TXNIP was measured by Western blot. Compared with the control group, Pb reduced the cell viability of PC12 cells. However, BSP treatment significantly increased the viability of PC12 cells induced by lead exposure (p < 0.05). Lead can enrich the contents of MDA and ROS, but decrease the amount of CAT, SOD, GR, GPx, and GSH/GSSG in PC12 cells, while BSP can alleviate it (p < 0.05). Lead can enhance the expression of Keap1 and TXNIP proteins, but reduce Nrf2 expression. In contrast, BSPs reversed this phenomenon (p < 0.05). BSPs can alleviate oxidative stress injury induced by lead in PC12 cells through the Keap1/Nrf2/TXNIP signaling pathway.

Funder

the Excellent Youth Project of the Natural Science Foundation of Henan Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3