Multi-Delay Identification of Rare Earth Extraction Process Based on Improved Time-Correlation Analysis

Author:

Lu Rongxiu,Liu HongliangORCID,Yang Hui,Zhu Jianyong,Dai Wenhao

Abstract

The rare earth extraction process has significant time delay characteristics, making it challenging to identify the time delay and establish an accurate mathematical model. This paper proposes a multi-delay identification method based on improved time-correlation analysis. Firstly, the data are preprocessed by grey relational analysis, and the time delay sequence and time-correlation data matrix are constructed. The time-correlation analysis matrix is defined, and the H∞ norm quantifies the correlation degree of the data sequence. Thus the multi-delay identification problem is transformed into an integer optimization problem. Secondly, an improved discrete state transition algorithm is used for optimization to obtain multi-delay. Finally, based on an Neodymium (Nd) component content model constructed by a wavelet neural network, the performance of the proposed method is compared with the unimproved time delay identification method and the model without an identification method. The results show that the proposed algorithm improves optimization accuracy, convergence speed, and stability. The performance of the component content model after time delay identification is significantly improved using the proposed method, which verifies its effectiveness in the time delay identification of the rare earth extraction process.

Funder

the National Key R&D Program of China

the Open Fund of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Bilinear model of rare earth cascade extraction process and its parameter identification;Jia;Control Theory Appl.,2006

2. Modeling and simulation of multicomponent solvent extraction processes to purify rare earth metals;Chan;Hydrometallurgy,2016

3. Simulation of rare earth extraction process based on separation coefficient correction;Yang;CIESC J.,2020

4. Robust identification of continuous systems with dead-time from step responses;Wang;Automatica,2001

5. Step response-based identification of fractional order time delay models;Salim;Circuits Syst. Signal Process.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3