A Study on Solutions for a Class of Higher-Order System of Singular Boundary Value Problem

Author:

Pandit Biswajit1,Verma Amit K.2ORCID,Agarwal Ravi P.3ORCID

Affiliation:

1. Center of Data Sciences, Siksha ‘O’ Anusandhan, ITER College, Bhubaneswar 751030, Odisha, India

2. Department of Mathematics, Indian Institute of Technology Patna, Patna 801106, Bihar, India

3. Department of Mathematics, Texas A & M University-Kingsville, 700 University Blvd., MSC 172, Kingsville, TX 78363-8202, USA

Abstract

In this article, we propose a fourth-order non-self-adjoint system of singular boundary value problems (SBVPs), which arise in the theory of epitaxial growth by considering hte equation 1rβrβ1rβ(rβΘ′)′′′=12rβK11μ′Θ′2+2μΘ′Θ″+K12μ′φ′2+2μφ′φ″+λ1G1(r),1rβrβ1rβ(rβφ′)′′′=12rβK21μ′Θ′2+2μΘ′Θ″+K22μ′φ′2+2μφ′φ″+λ2G2(r), where λ1≥0 and λ2≥0 are two parameters, μ=pr2β−2,p∈R+, G1,G2∈L1[0,1] such that M1*≥G1(r)≥M1>0,M2*≥G2(r)≥M2>0 and K12>0, K11≥0, and K21>0, K22≥0 are constants that are connected by the relation (K12+K22)≥(K11+K21) and β>1. To study the governing equation, we consider three different types of homogeneous boundary conditions. We use the transformation t=r1+β1+β to deduce the second-order singular boundary value problem. Also, for β=p=G1(r)=G2(r)=1, it admits dual solutions. We show the existence of at least one solution in continuous space. We derive a sign of solutions. Furthermore, we compute the approximate bound of the parameters to point out the region of nonexistence. We also conclude bounds are symmetric with respect to two different transformations.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference36 articles.

1. Barabasi, A.L., and Stanley, H.E. (1995). Fractal Concepts in Surface Growth, Cambridge University Press.

2. Foord, J.S., Davies, G.J., and Tsang, W.T. (1997). Chemical Beam Epitaxy and Related Techniques, John Wiley and Sons Ltd.

3. Hybrid vapor phase epitaxy revisited;Lourdudoss;IEEE J. Sel. Top. Quantum Electron.,1997

4. Geometric principles of surface growth;Escudero;Phys. Rev. Lett.,2008

5. On radial stationary solutions to a model of nonequilibrium growth;Escudero;Eur. J. Appl. Math.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3