Evidence of Noisy Oscillations of cAMP under Nutritional Stress Condition in Budding Yeast

Author:

Colombo Sonia12,Collini Maddalena3ORCID,D’Alfonso Laura3ORCID,Chirico Giuseppe3ORCID,Martegani Enzo12

Affiliation:

1. Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy

2. SYSBIO—Center of Systems Biology, Piazza della Scienza 2, 20126 Milano, Italy

3. Dipartimento di Fisica, Università di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy

Abstract

The Ras/cAMP/PKA pathway regulates responses to nutrients’ availability and stress in budding yeast. The cAMP levels are subjected to negative feedback, and we have previously simulated a dynamic model of this pathway suggesting the existence of stable oscillatory states depending on the symmetrical and opposed activity of the RasGEF (Cdc25) and RasGAPs (Ira proteins). Noisy oscillations related to the activity of this pathway were reported by looking at the nuclear localization of the transcription factor Msn2, and sustained oscillations of the nuclear accumulation of Msn2 under the condition of limiting glucose were observed. We were able to reproduce the periodic accumulation of Msn2-GFP protein in a yeast cell under the condition of limiting glucose, and we also detected oscillations of cAMP. We used a sensor based on a fusion protein between YFP-Epac2-CFP expressed in yeast cells. The FRET between CFP and YFP is controlled by the cAMP concentration. This sensor allows us to monitor changes in cAMP concentrations in a single yeast cell over a long time. Using this method, we were able to detect noisy oscillations of cAMP levels in single yeast cells under conditions of nutritional stress caused by limiting glucose availability.

Funder

FAR—University of Milano-Bicocca

Program Sys-BioNet, Italian Roadmap Research Infrastructure 2012

University of Milano-Bicocca

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3