Author:
Lee Jung Wook,Kim In Ho,Woyengo Tofuko Awori
Abstract
Canola co-products are widely included in swine diets as sources of proteins. However, inclusion of canola co-products in diets for pigs is limited by toxicity of glucosinolate degradation products. Aliphatic and aromatic glucosinolates are two major classes of glucosinolates. Glucosinolate degradation products derived from aliphatic glucosinolates (progoitrin) include crambene, epithionitriles, and goitrin, whereas indole-3-acetonitrile, thiocyanate, and indole-3-carbinol are the major aromatic glucosinolates (glucobrassicin)-derived degradation products. At acidic pH (<5.7), progoitrin is degraded by myrosinases to crambene and epithionitriles in the presence of iron, regardless of the presence of epithiospecifier protein (ESP), whereas progoitrin is degraded by myrosinases to goitrin in the absence of ESP, regardless of the presence of iron at neutral pH (6.5). Indole-3-acetonitrile is the major degradation product derived from glucobrassicin in the absence of ESP, regardless of the presence of iron at acidic pH (<4.0), whereas thiocyanate and indole-3-carbinol are the major glucobrassicin-derived degradation products in the absence of ESP, regardless of the presence of iron at neutral pH (7.0). In conclusion, the composition of glucosinolate degradation products is affected by parent glucosinolate composition and hindgut pH. Thus, toxicity of canola co-product-derived glucosinolates can be potentially alleviated by modifying the hindgut pH of pigs.
Subject
General Veterinary,Animal Science and Zoology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献