Enhancement of Film Cooling Effectiveness in a Supersonic Nozzle

Author:

Somasekharan Nithin1,Srikrishnan A. R.1,Kumar Harihara Sudhan1ORCID,Ganesh Krishna Prasad1,Mohammad Akram2ORCID,Velamati Ratna Kishore3ORCID

Affiliation:

1. Department of Aerospace Engineering, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Tamil Nadu 641112, India

2. Department of Aerospace Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Department of Mechanical Engineering, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Tamil Nadu 641112, India

Abstract

Film cooling as applied to rocket nozzles is analyzed numerically with emphasis on the assessment of the effect of the mixing of coolant with the hot stream. Cooling performance, as characterized by cooling effectiveness, is studied for three different coolants in the three-dimensional, turbulent flow field of a supersonic convergent-divergent nozzle operating with a hot stream temperature of 2500 K over a range of blowing ratios. The coolant stream is injected tangentially into the mainstream using a diffuser-type injector. Parameters influencing the effectiveness, such as coolant injector configuration and mixing layer, are analyzed. Thermal and species mixing between the coolant and the mainstream are investigated with regard to their impact on cooling effectiveness. The results obtained provide insight into the film cooling performance of the gases and the heat transfer characteristics associated with these three gases. An injector taper angle of 30° results in the most effective cooling among the configurations considered (0°, 15°, 30° and 45°). Mixing of the coolant with the hot stream is examined based on the distributions of velocity, temperature and species. The higher values of cooling effectiveness for Helium are attributed to its thermophysical properties and the reduced rate of mixing with the hot stream. The results further indicate that through optimization of the blowing ratio and the coolant injector configuration, the film cooling effectiveness can be substantially improved.

Funder

Amrita Vishwa Vidyapeetham

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3