A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1

Author:

Chorev Michal1ORCID,Haderlein Jonas1,Chandra Shruti2ORCID,Menon Geeta3,Burton Benjamin4,Pearce Ian5,McKibbin Martin6,Thottarath Sridevi2,Karatsai Eleni2,Chandak Swati2,Kotagiri Ajay7,Talks James8,Grabowska Anna9,Ghanchi Faruque10,Gale Richard11,Hamilton Robin2ORCID,Antony Bhavna1ORCID,Garnavi Rahil1,Mareels Iven1,Giani Andrea12,Chong Victor13ORCID,Sivaprasad Sobha213ORCID

Affiliation:

1. Centre for Applied Research, IBM Australia, Southbank, VIC 3006, Australia

2. National Institute of Health Research, Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK

3. Frimley Health NHS Foundation Trust, Surrey GU16 7UJ, UK

4. Department of Ophthalmology, James Paget University Hospitals NHS Foundation Trust, Norfolk NR31 6LA, UK

5. Clinical Eye Research Centre, St. Paul’s Eye Unit, The Royal Liverpool and Broadgreen University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK

6. Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK

7. South Tyneside and Sunderland NHS Foundation Trust, Sunderland SR4 7TP, UK

8. Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK

9. King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK

10. Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK

11. York Teaching Hospital NHS Foundation Trust, York YO31 8HE, UK

12. Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany

13. Institute of Ophthalmology, University College London, London NW3 2PF, UK

Abstract

Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable more efficient clinical trial designs for novel, future interventions and facilitate individualised therapies. In this multicentre study, we trained a multi-modal artificial intelligence (AI) system to identify suboptimal responders to the loading-phase of the anti-VEGF agent aflibercept from baseline characteristics. We collected clinical features and optical coherence tomography scans from 1720 eyes of 1612 patients between 2019 and 2021. We evaluated our AI system as a patient selection method by emulating hypothetical clinical trials of different sizes based on our test set. Our method detected up to 57.6% more suboptimal responders than random selection, and up to 24.2% more than any alternative selection criteria tested. Applying this method to the entry process of candidates into randomised controlled trials may contribute to the success of such trials and further inform personalised care.

Funder

Boehringer Ingelheim

Australian Research Council Training Centre in Cognitive Computing for Medical Technologies

NIHR Moorfields Clinical Research Facility and Biomedical Research Centre

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3