Overview on Permanent Magnet Motor Trends and Developments

Author:

Vlachou Vasileios I.1ORCID,Sakkas Georgios K.1,Xintaropoulos Fotios P.1,Pechlivanidou Maria Sofia C.1,Kefalas Themistoklis D.2,Tsili Marina A.3,Kladas Antonios G.1ORCID

Affiliation:

1. Laboratory of Electrical Machines and Power Electronics, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

2. Hellenic Electricity Distribution Network Operator HEDNO S.A., 10434 Athens, Greece

3. Independent Power Transmission Operation (IPTO-ADMIE), 89 Dyrrachiou Street, 15343 Athens, Greece

Abstract

The extreme environmental issues and the resulting need to save energy have turned attention to the electrification of energy applications. One of the key components involved in energy efficiency improvements is the appropriate conception and manufacturing of electric machines. This paper overviews the electromagnetic analysis governing the behavior of permanent magnets that enable substantial efficiency gains in recent electric machine developments. Particular emphasis is given to modeling the properties and losses developed in permanent magnets in emerging high speed applications. In addition, the investigation of properties and harmonic losses related to ferromagnetic materials constituting the machine magnetic circuits are equally analyzed and discussed. The experimental validation of the implemented methodologies and developed models with respect to the obtained precision is reported. The introduction of mixed numerical techniques based on the finite element method intended to appropriately represent the different physical phenomena encountered is outlined and discussed. Finally, fast and accurate simulation techniques including aggregated lumped parameter models considering harmonic losses associated with inverter supplies are discussed.

Funder

European Regional Development Fund of the European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3