Abstract
Due to its high efficiency, good safety profile, and potential cardio-protective properties, metformin, a dimethyl biguanide, is the first-line medication in antihyperglycemic treatment for type 2 diabetic patients. The aim of our present study was to assess the effects of eight new sulfonamide-based derivatives of metformin on selected plasma parameters and vascular hemostasis, as well as on endothelial and smooth muscle cell function. The compounds with an alkyl chain (1–3), trifluoromethyl substituent (4), or acetyl group (5) significantly elevated glucose utilization in human umbilical endothelial cells (HUVECs), similarly to metformin. Our novel findings showed that metformin analogues 1–3 presented the most beneficial properties because of their greatest safety profile in the WST-1 cell viability assay, which was also proved in the further HUVEC integrity studies using RTCA DP. Compounds 1–3 did not affect either HUVEC or aortal smooth muscle cell (AoSMC) viability up to 3.0 mM. Importantly, these compounds beneficially affected some of the coagulation parameters, including factor X and antithrombin III activity. In contrast to the above-mentioned metformin analogues, derivatives 4 and 5 exerted more profound anticoagulation effects; however, they were also more cytotoxic towards HUVECs, as IC50 values were 1.0–1.5 mM. In conclusion, the chemical modification of a metformin scaffold into sulfonamides possessing alkyl substituents results in the formation of novel derivatives with potential bi-directional activity including anti-hyperglycemic properties and highly desirable anti-coagulant activity.
Funder
Medical University of Lodz
Academy of Finland
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献