The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies

Author:

Kassab Amal,Rizk Nasser,Prakash Satya

Abstract

Advances in aging studies brought about by heterochronic parabiosis suggest that agingmight be a reversable process that is affected by changes in the systemic milieu of organs andcells. Given the broadness of such a systemic approach, research to date has mainly questioned theinvolvement of “shared organs” versus “circulating factors”. However, in the absence of a clearunderstanding of the chronological development of aging and a unified platform to evaluate thesuccesses claimed by specific rejuvenation methods, current literature on this topic remains scattered.Herein, aging is assessed from an engineering standpoint to isolate possible aging potentiators via ajuxtaposition between biological and mechanical systems. Such a simplification provides a generalframework for future research in the field and examines the involvement of various factors in aging.Based on this simplified overview, the kidney as a filtration organ is clearly implicated, for the firsttime, with the aging phenomenon, necessitating a re-evaluation of current rejuvenation studies tountangle the extent of its involvement and its possible role as a potentiator in aging. Based on thesefindings, the review concludes with potential translatable and long-term therapeutics for aging whileoffering a critical view of rejuvenation methods proposed to date.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular mechanisms of aging and anti-aging strategies;Cell Communication and Signaling;2024-05-24

2. Neural Correlates and Molecular Mechanisms of Memory and Learning;International Journal of Molecular Sciences;2024-02-27

3. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models;International Journal of Molecular Sciences;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3