Electropositive Promotion by Alkalis or Alkaline Earths of Pt-Group Metals in Emissions Control Catalysis: A Status Report

Author:

Yentekakis Ioannis V.,Vernoux Philippe,Goula Grammatiki,Caravaca Angel

Abstract

Recent studies have shown that the catalytic performance (activity and/or selectivity) of Pt-group metal (PGM) catalysts for the CO and hydrocarbons oxidation as well as for the (CO, HCs or H2)-SCR of NOx or N2O can be remarkably affected through surface-induced promotion by successful application of electropositive promoters, such as alkalis or alkaline earths. Two promotion methodologies were implemented for these studies: the Electrochemical Promotion of Catalysis (EPOC) and the Conventional Catalysts Promotion (CCP). Both methodologies were in general found to achieve similar results. Turnover rate enhancements by up to two orders of magnitude were typically achievable for the reduction of NOx by hydrocarbons or CO, in the presence or absence of oxygen. Subsequent improvements (ca. 30–60 additional percentage units) in selectivity towards N2 were also observed. Electropositively promoted PGMs were also found to be significantly more active for CO and hydrocarbons oxidations, either when these reactions occur simultaneously with deNOx reactions or not. The aforementioned direct (via surface) promotion was also found to act synergistically with support-mediated promotion (structural promotion); the latter is typically implemented in TWCs through the complex (Ce–La–Zr)-modified γ-Al2O3 washcoats used. These attractive findings prompt to the development of novel catalyst formulations for a more efficient and cost-effective control of the emissions of automotives and stationary combustion processes. In this report the literature findings in the relevant area are summarized, classified and discussed. The mechanism and the mode of action of the electropositive promoters are consistently interpreted with all the observed promoting phenomena, by means of indirect (kinetics) and direct (spectroscopic) evidences.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3