Influence of Powder Deposition on Powder Bed and Specimen Properties

Author:

Beitz Steffen,Uerlich Roland,Bokelmann Tjorben,Diener Alexander,Vietor Thomas,Kwade ArnoORCID

Abstract

Three-dimensional printing used to be a rapid prototyping process, but nowadays it is establishing as an additive manufacturing (AM) process. One of these AM techniques is selective laser sintering (SLS), which most often involves partial melting of the particles and therefore belongs to the category of powder bed fusion processes. Much progress has been made in this field by research on process parameters like laser power, hatch distance, and scanning speed while still lacking a fundamental understanding of the powder deposition and its influence on parts. A critical issue for economic manufacturing is the building time of parts with good mechanical properties, which can be reduced by lower surface roughness due to less or missing post processing. Therefore, the influence of three blade shapes on powder bed surface roughness has been evaluated for PA12 powder with three different grain size distributions by using advanced X-ray micro computed tomography (XMT) and a confocal laser scanning microscope (LSM). Along with those methods, new techniques for powder characterization were tested and compared. Lowest roughness has been achieved with a flat blade, based on a higher compression due to a larger contact zone between blade and powder bed. Furthermore, an anisotropic effect of the mechanical properties resulting from different building directions has been detected which can be explained by varying amounts of solid contact paths through the powder bed depending on powder application direction. In addition, an optimal combination of process parameters with an even compression of the powder bed leads to low surface roughness, complementing the advantages of additive manufacturing.

Publisher

MDPI AG

Subject

General Materials Science

Reference68 articles.

1. A new methodological framework for design for additive manufacturing

2. DIN EN ISO/ASTM 52900 Additive Manufacturing—General Principles—Terminology 2018https://www.din.de/en/getting-involved/standards-committees/nwt/wdc-beuth:din21:269489319

3. Additive Fertigung mit Selektivem Lasersintern (SLS): Prozess- und Werkstoffüberblick;Schmid,2015

4. Laser sintering of polyamides and other polymers

5. Using X-ray computed tomography to improve the porosity level of polyamide-12 laser sintered parts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3