The Human Early Maternal–Embryonic Interactome

Author:

Stevens Adam12ORCID,Khashkhusha Taqua12,Sharps Megan12,Garner Terence12,Ruane Peter T.12,Aplin John D.12ORCID

Affiliation:

1. Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester M13 9WL, UK

2. St. Mary’s Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK

Abstract

Background: Single cell transcriptomics offers an avenue for predicting, with improved accuracy, the gene networks that are involved in the establishment of the first direct cell–cell interactions between the blastocyst and the maternal luminal epithelium. We hypothesised that in silico modelling of the maternal–embryonic interface may provide a causal model of these interactions, leading to the identification of genes associated with a successful initiation of implantation. Methods: Bulk and single cell RNA-sequencing of endometrial epithelium and scRNAseq of day 6 and 7 trophectoderm (TE) were used to model the initial encounter between the blastocyst and the maternal uterine lining epithelium in silico. In silico modelling of the maternal–embryonic interface was performed using hypernetwork (HN) analysis of genes mediating endometrial–TE interactions and the wider endometrial epithelial transcriptome. A hypernetwork analysis identifies genes that co-ordinate the expression of many other genes to derive a higher order interaction likely to be causally linked to the function. Potential interactions of TE with non-ciliated luminal cells, ciliated cells, and glandular cells were examined. Results: Prominent epithelial activities include secretion, endocytosis, ion transport, adhesion, and immune modulation. Three highly correlated clusters of 25, 22 and 26 TE-interacting epithelial surface genes were identified, each with distinct properties. Genes in both ciliated and non-ciliated luminal epithelial cells and glandular cells exhibit significant functional associations. Ciliated cells are predicted to bind to TE via galectin–glycan interaction. Day 6 and day 7 embryonic–epithelial interactomes are largely similar. The removal of aneuploid TE-derived mRNA invoked only subtle differences. No direct interaction with the maternal gland epithelial cell surface is predicted. These functional differences validate the in silico segregation of phenotypes. Single cell analysis of the epithelium revealed significant change with the cycle phase, but differences in the cell phenotype between individual donors were also present. Conclusions: A hypernetwork analysis can identify epithelial gene clusters that show correlated change during the menstrual cycle and can be interfaced with TE genes to predict pathways and processes occurring during the initiation of embryo–epithelial interaction in the mid-secretory phase. The data are on a scale that is realistic for functional dissection using current ex vivo human implantation models. A focus on luminal epithelial cells may allow a resolution to the current bottleneck of endometrial receptivity testing based on tissue lysates, which is confounded by noise from multiple diverse cell populations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3