Weak Degradation Characteristics Analysis of UAV Motors Based on Laplacian Eigenmaps and Variational Mode Decomposition

Author:

Wang Xiaohong,Fan Wenhui,Li Xinjun,Wang Lizhi

Abstract

Brushless direct current (BLDC) motors are the source of flight power during the operation of rotary-wing unmanned aerial vehicles (UAVs), and their working state directly affects the safety of the whole system. To predict and avoid motor faults, it is necessary to accurately understand the health degradation process of the motor before any fault occurs. However, in actual working conditions, due to the aerodynamic environmental conditions of the aircraft flight, the background noise components of the vibration signals characterizing the running state of the motor are complex and severely coupled, making it difficult for the weak degradation characteristics to be clearly reflected. To address these problems, a weak degradation characteristic extraction method based on variational mode decomposition (VMD) and Laplacian Eigenmaps (LE) was proposed in this study to precisely identify the degradation information in system health data, avoid the loss of critical information and the interference of redundant information, and to optimize the description of a motor’s degradation process despite the presence of complex background noise. A validation experiment was conducted on a specific type of motor under operation with load, to obtain the degradation characteristics of multiple types of vibration signals, and to test the proposed method. The results proved that this method can improve the stability and accuracy of predicting motor health, thereby helping to predict the degradation state and to optimize the maintenance strategies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3