Comparative Experimental Investigation on Optimal Parametric Array Types

Author:

Jung DonghwanORCID,Song JiyoungORCID,Kim JeasooORCID,Lee Jaehyuk

Abstract

As a sound transmitting device that relies on the nonlinearity of a medium, a parametric array (PA) can generate high-directivity low-frequency signals using a small aperture transducer and high-frequency signals. Despite their relatively low source level, the PA is frequently used to measure the acoustic properties of materials in low-frequency regions owing to their high directivity in confined acoustic water tanks. Therefore, methods for improving the source level of secondary signals are of interest. Currently, there are two driving methods for PA: the dual-frequency PA and the broadband PA with amplitude modulation. In this study, we share the results of an elaborate and comparative experimental investigation of these two driving methods. Comparisons are made and discussed in terms of the intensity of the generated secondary signal and its characteristics in the frequency domain. Based on these factors, we confirmed that the broadband PA was more suitable as the sound source of the low-frequency characteristic measurement system of acoustic materials.

Funder

Development of a measurement system for low-frequency characteristics of acoustical materials based on parametric arrays

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Handbook of sonar transducer passive materials

2. Underwater Electroacoustic Measurements;Bobber,1988

3. Evaluation of transducer window materials

4. Apparatus‐independent acoustical‐material characteristics obtained from panel‐test measurements

5. Experimental Investigation of Parametric Array for Low Frequency Measurement System of Acoustic Materials;Jung

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of parametric acoustic array based on inverse control processing;Applied Acoustics;2022-06

2. Experimental evaluation of pseudo-sound in a parametric array;The Journal of the Acoustical Society of America;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3