3D-Printed Encapsulation of Thin-Film Transducers for Reliable Force Measurement in Biomedical Applications

Author:

Pertusio Raffaele1,Roatta Silvestro1ORCID

Affiliation:

1. Department of Neuroscience, University of Torino, 10125 Torino, Italy

Abstract

In biomedical studies as well as in clinical trials, it is often useful to have a reliable measure of the force exerted by the body (e.g., clenching force at the teeth or pinch force at fingertips) or on the body by external stimuli (e.g., taps to elicit reflexes or local pressure for nociceptive stimulation). Thin-film sensors such as FlexiForce® provide a very handy and versatile solution for these applications, but can be easily damaged and offer poor accuracy and repeatability, being heavily affected by the surface material they come into contact with. The aim of the study is the realization of a 3D-printed housing that completely embeds the sensor, thus providing mechanical protection and increasing the reliability of the measurement. The increasing availability of 3D printers and of printing materials for medical use allows the user to shape the housing according to specific needs, with short developing time and low cost.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3