Abstract
Microfluidic automation technology is at a stage where the complexity and cost of external hardware control often impose severe limitations on the size and functionality of microfluidic systems. Developments in autonomous microfluidics are intended to eliminate off-chip controls to enable scalable systems. Timing is a fundamental component of the digital logic required to manipulate fluidic flow. The authors present a self-driven pneumatic ring oscillator manufactured by assembling an elastomeric sheet of polydimethylsiloxane (PDMS) between two laser-engraved polymethylmethacrylate (PMMA) layers via surface activation through treatment with 3-aminopropyltriethoxysilane (APTES). The frequency of the fabricated oscillators is in the range of 3–7.5 Hz with a maximum of 14 min constant frequency syringe-powered operation. The control of a fluidic channel with the oscillator stages is demonstrated. The fabrication process represents an improvement in manufacturability compared to previous molding or etching approaches, and the resulting devices are inexpensive and portable, making the technology potentially applicable for wider use.
Funder
National Institutes of Health
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献