A User-Centric 3D-Printed Modular Peristaltic Pump for Microfluidic Perfusion Applications

Author:

A. Cataño Jorge12,Farthing Steven1,Mascarenhas Zeus1ORCID,Lake Nathaniel1ORCID,Yarlagadda Prasad K. D. V.123ORCID,Li Zhiyong12,Toh Yi-Chin1245

Affiliation:

1. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia

2. Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia

3. School of Engineering, University of Southern Queensland, Springfield Central 4300, Australia

4. Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Kelvin Grove 4059, Australia

5. Centre for Microbiome Research, Queensland University of Technology, Woolloongabba 4102, Australia

Abstract

Microfluidic organ-on-a-chip (OoC) technology has enabled studies on dynamic physiological conditions as well as being deployed in drug testing applications. A microfluidic pump is an essential component to perform perfusion cell culture in OoC devices. However, it is challenging to have a single pump that can fulfil both the customization function needed to mimic a myriad of physiological flow rates and profiles found in vivo and multiplexing requirements (i.e., low cost, small footprint) for drug testing operations. The advent of 3D printing technology and open-source programmable electronic controllers presents an opportunity to democratize the fabrication of mini-peristaltic pumps suitable for microfluidic applications at a fraction of the cost of commercial microfluidic pumps. However, existing 3D-printed peristaltic pumps have mainly focused on demonstrating the feasibility of using 3D printing to fabricate the structural components of the pump and neglected user experience and customization capability. Here, we present a user-centric programmable 3D-printed mini-peristaltic pump with a compact design and low manufacturing cost (~USD 175) suitable for perfusion OoC culture applications. The pump consists of a user-friendly, wired electronic module that controls the operation of a peristaltic pump module. The peristaltic pump module comprises an air-sealed stepper motor connected to a 3D-printed peristaltic assembly, which can withstand the high-humidity environment of a cell culture incubator. We demonstrated that this pump allows users to either program the electronic module or use different-sized tubing to deliver a wide range of flow rates and flow profiles. The pump also has multiplexing capability as it can accommodate multiple tubing. The performance and user-friendliness of this low-cost, compact pump can be easily deployed for various OoC applications.

Funder

Australian Research Council

QUT Centre

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3