Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities

Author:

Tartaglia Gianluca M.,Mapelli Andrea,Maspero CinziaORCID,Santaniello Tommaso,Serafin MarcoORCID,Farronato MarcoORCID,Caprioglio Alberto

Abstract

The recent introduction of three-dimensional (3D) printing is revolutionizing dentistry and is even being applied to orthodontic treatment of malocclusion. Clear, personalized, removable aligners are a suitable alternative to conventional orthodontic appliances, offering a more comfortable and efficient solution for patients. Including improved oral hygiene and aesthetics during treatment. Contemporarily, clear aligners are produced by a thermoforming process using various types of thermoplastic materials. The thermoforming procedure alters the properties of the material, and the intraoral environment further modifies the properties of a clear aligner, affecting overall performance of the material. Direct 3D printing offers the creation of highly precise clear aligners with soft edges, digitally designed and identically reproduced for an entire set of treatment aligners; offering a better fit, higher efficacy, and reproducibility. Despite the known benefits of 3D printing and the popularity of its dental applications, very limited technical and clinical data are available in the literature about directly printed clear aligners. The present article discusses the advantages of 3D printed aligners in comparison to thermoformed ones, describes the current state of the art, including a discussion of the possible road blocks that exist such as a current lack of approved and marketed materials and limited existence of aligner specific software. The present review suggests the suitability of 3D direct printed aligners is superior to that of thermoformed manufactured aligners because of the prior’s increased accuracy, load resistance, and lower deformation. It is an overall more stable way to produce an aligner where submillimeter movements can make a difference in treatment outcome. Direct 3D printing represents a complex method to control the thickness of the aligner and therefore has a better ability to control the force vectors that are used to produce tooth movement. There is currently no other approved material on the market that can do this. The conclusion of this article is that we encourage further in vitro and in vivo studies to test these new technologies and materials.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3