Characterization of Hybrid Materials Prepared by Sol-Gel Method for Biomedical Implementations. A Critical Review

Author:

Catauro MichelinaORCID,Ciprioti Stefano VecchioORCID

Abstract

The interaction between tissues and biomaterials (BM) has the purpose of improving and replacing anatomical parts of the human body, avoiding the occurrence of adverse reactions in the host organism. Unfortunately, the early failure of implants cannot be currently avoided, since neither a good mixture of mechanical and chemical characteristics of materials nor their biocompatibility has been yet achieved. Bioactive glasses are recognized to be a fine class of bioactive substances for good repair and replacement. BM interact with living bones through the formation of a hydroxyapatite surface layer that is analogous to bones. Bioglasses’ composition noticeably affects their biological properties, as does the synthesis method, with the best one being the versatile sol-gel technique, which includes the change of scheme from a ‘sol’ fluid into a ‘gel’. This process is widely used to prepare many materials for biomedical implants (e.g., hip and knee prostheses, heart valves, and ceramic, glassy and hybrid materials to serve as carriers for drug release). Nanoparticles prepared by the sol-gel method are interesting systems for biomedical implementations, and particularly useful for cancer therapy. This review provides many examples concerning the synthesis and characterization of the above-mentioned materials either taken from literature and from recently prepared zirconia/polyethylene glycol (PEG) hybrids, and the corresponding results are extensively discussed.

Publisher

MDPI AG

Subject

General Materials Science

Reference132 articles.

1. Osteolysis around total knee arthroplasty: A review of pathogenetic mechanisms

2. The Role of Oxidative Stress in Aseptic Loosening of Total Hip Arthroplasties

3. Biomaterials

4. Synthesis, characterization and biological evaluation of sol-gel derived nanomaterial in the ternary system 64 % SiO2—31 % CaO—5 % P2O5 as a bioactive glass: In vitro study;Bizari;Ceram. Silikáty,2013

5. Influence of fluoride additions on biological and mechanical properties of Na2O–CaO–SiO2–P2O5 glass–ceramics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3