Seedling Growth and Biomass Production under Different Light Availability Levels and Competition Types

Author:

Bebre IevaORCID,Riebl HannesORCID,Annighöfer Peter

Abstract

Light availability is a crucial resource determining seedling survival, establishment, and growth. Competition for light is asymmetric, giving the taller individuals a competitive advantage for obtaining light resources. Species-specific traits, e.g., shade tolerance, rooting depth, and leaf morphology, determine their strategical growth response under limited resource availability and different competitive interactions. We established a controlled pot experiment using European beech, Norway spruce, and Douglas fir seedlings and applying three different light availability levels—10%, 20%, and 50%. The experiment’s main aim was to better understand the effects of light availability and competition type on the growth, growth allocation, and biomass production of recently planted seedlings. We planted four seedlings per pot in either monocultures or mixtures of two species. Relative height and diameter growth and aboveground woody biomass of seedlings increased with increasing light availability. All seedlings allocated more growth to height than diameter with decreasing light availability. Seedlings that reached on average greater height in the previous year allocated less growth to height in the following year. Additionally, there were general differences in growth allocation to the height between gymnosperms and angiosperms, but we did not find an effect of the competitor’s identity. Our mixture effect analysis trends suggested that mixtures of functionally dissimilar species are more likely to produce higher biomass than mixtures of more similar species such as the two studied conifers. This finding points towards increased productivity through complementarity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3