Empirical Coastal Atmospheric Corrosion of Masonry Metal Wall Ties

Author:

Chaves Igor A.ORCID,de Prazer SeanORCID,Jardim do Nascimento Barbara,Flowers Gregory

Abstract

Not counting domestic dwellings, it has been estimated that in Australia alone, some tens of thousands of masonry buildings and structures have exceeded their design life, with many of these being at risk of partial (or worse) collapse from falling or dislodged masonry. This has significant implications for human life but also for the urban environment and economic health of building owners, managers, and insurers and for local and national economies. This risk can mainly be attributed to the slow deterioration of masonry under atmospheric and other environments and the corrosion of so-called wall ties. Wall ties are relatively thin pieces of steel that tie the outer leaf of masonry walls to the stabilized inner leaf. The problem is likely severe for scenarios such as cyclonic and earthquake events, as they cause area-wide damage and the potential wide-spread loss of human life—losses that could be prevented by timely intervention. This paper reports on the in situ inspection of two case study buildings and the data obtained from controlled wall tie corrosion field trials, which are used to develop predictive models of structural response. These models will inform practical tools that will be developed for building assessment, cost-effective monitoring, and rectification, assisting in the management of existing masonry buildings.

Publisher

MDPI AG

Subject

General Medicine

Reference20 articles.

1. Urban Development Institute of Australia-Western Australia 2020, Modern Methods of Housing Construction, 16 phttps://www.udiawa.com.au/wp-content/uploads/2021/01/FINAL-UDIA-Report-Modern-Methods-of-Construction.pdf

2. Comparison of theoretical and empirically determined service lives for wall ties in brick veneer steel stud wall systemsThis article is one of a selection of papers published in this Special Issue on Masonry.

3. ISO 9223 Corrosion of Metals and Alloys. Corrosivity of Atmospheres-Classification, Determination and Estimation,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3