Optimizing Protein Production in Therapeutic Phages against a Bacterial Pathogen, Mycobacterium abscessus

Author:

Xia Xuhua12ORCID

Affiliation:

1. Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada

2. Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada

Abstract

Therapeutic phages against pathogenic bacteria should kill the bacteria efficiently before the latter evolve resistance against the phages. While many factors contribute to phage efficiency in killing bacteria, such as phage attachment to host, delivery of phage genome into the host, phage mechanisms against host defense, phage biosynthesis rate, and phage life cycle, this paper focuses only on the optimization of phage mRNA for efficient translation. Phage mRNA may not be adapted to its host translation machinery for three reasons: (1) mutation disrupting adaptation, (2) a recent host switch leaving no time for adaptation, and (3) multiple hosts with different translation machineries so that adaptation to one host implies suboptimal adaptation to another host. It is therefore important to optimize phage mRNAs in therapeutic phages. Theoretical and practical principles based on many experiments were developed and applied to phages engineered against a drug-resistant Mycobacterium abscessus that infected a young cystic fibrosis patient. I provide a detailed genomic evaluation of the three therapeutic phages with respect to translation initiation, elongation, and termination, by making use of both experimental results and highly expressed genes in the host. For optimizing phage genes against M. abscessus, the start codon should be AUG. The DtoStart distance from base-pairing between the Shine-Dalgarno (SD) sequence and the anti-SD sequence should be 14–16. The stop codon should be UAA. If UAG or UGA is used as a stop codon, they should be followed by nucleotide U. Start codon, SD, or stop codon should not be embedded in a secondary structure that may obscure the signals and interfere with their decoding. The optimization framework should be generally applicable to developing therapeutic phages against bacterial pathogens.

Funder

Natural Science and Engineering Research Council (NSERC) of Canada

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3