In-Field Detection of American Foulbrood (AFB) by Electric Nose Using Classical Classification Techniques and Sequential Neural Networks

Author:

Bąk BeataORCID,Szkoła JarosławORCID,Wilk JakubORCID,Artiemjew PiotrORCID,Wilde JerzyORCID

Abstract

American foulbrood is a dangerous bee disease that attacks the sealed brood. It quickly leads to the death of bee colonies. Efficient diagnosis of this disease is essential. As specific odours are produced when larvae rot, it was investigated whether an electronic nose can distinguish between colonies affected by American foulbrood and healthy ones. The experiment was conducted in an apiary with 18 bee families, 9 of which showed symptoms of the disease confirmed by laboratory diagnostics. Three units of the Beesensor V.2 device based on an array of six semiconductor TGS gas sensors, manufactured by Figaro, were tested. Each copy of the device was tested in all bee colonies: sick and healthy. The measurement session per bee colony lasted 40 min and yielded results from four 10 min measurements. One 10-min measurement consisted of a 5 min regeneration phase and a 5 min object-measurement phase. For the experiments, we used both classical classification methods such as k-nearest neighbour, Naive Bayes, Support Vector Machine, discretized logistic regression, random forests, and committee of classifiers, that is, methods based on extracted representative data fragments. We also used methods based on the entire 600 s series, in this study of sequential neural networks. We considered, in this study, six options for data preparation as part of the transformation of data series into representative results. Among others, we used single stabilised sensor readings as well as average values from stable areas. For verifying the quality of the classical classifiers, we used the 25-fold train-and-test method. The effectiveness of the tested methods reached a threshold of 75 per cent, with results stable between 65 and 70 per cent. As an element to confirm the possibility of class separation using an artificial nose, we used applied visualisations of classes. It is clear from the experiments conducted that the artificial nose tested has practical potential. Our experiments show that the approach to the problem under study by sequential network learning on a sequence of data is comparable to the best classical methods based on discrete data samples. The results of the experiment showed that the Beesensor V.2 along with properly selected classification techniques can become a tool to facilitate rapid diagnosis of American foulbrood under field conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3