Nature-Inspired Design and Advanced Multi-Computational Investigations on the Mission Profile of a Highly Manoeuvrable Unmanned Amphibious Vehicle for Ravage Removals in Various Oceanic Environments

Author:

Raja VijayanandhORCID,Madasamy Senthil KumarORCID,Rajendran ParvathyORCID,Ganesan Sangeetha,Murugan Dharshini,A. Z. AL-bonsrulah HusseinORCID,Al-Bahrani MohammedORCID

Abstract

Recent large-scale operations, including frequent maritime transportation and unauthorised as well as unlawful collisions of drainage wastes, have polluted the ocean’s ecology. Due to the ocean’s unsuitable ecology, the entire globe may experience drastic aberrant conditions, which will force illness onto all living things. Therefore, an advanced system is very necessary to remove the undesired waste from the ocean’s surface and interior. Through the use of progressive unmanned amphibious vehicles (UAV), this study provides a dynamic operational mode-based solution to damage removal. In order to successfully handle the heavy payloads of ravage collections when the UAV reveals centre of gravity concerns, a highly manoeuvrable-based design inspired by nature has been imposed. The ideal creatures to serve as the inspiration for this piece are tropical birds, which have a long tail for navigating tricky situations. The design initialization was carried out by focusing on the outer body of tropical birds. Following this, special calculations were conducted and the full design parameters of the UAV were established. This study proposes a unique mathematical formulation for the development of primary and secondary design parameters of an UAV. The proposed mission profile of this application is computationally tested with the aid of sophisticated computational methodologies after the modelling of this UAV. The computational methods that are required are one-way coupling-based hydro-structural interaction assessments and computational hydrodynamic analyses. Computing is used to determine the aerodynamic and hydrodynamic forces over the UAV, the lightweight materials to withstand high fluid dynamic loads, and the buoyancy forces to complete the UAV components. These computational methods have been used to produce a flexible and fine-tuned UAV design for targeted real-time applications.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3