Comparison of Offline, Real-Time Models and Hardware-in-the-Loop Test Results of a Power Take-Off for Wave Energy Applications

Author:

Castellini Luca,Gallorini Federico,Alessandri Giacomo,Alves Erick FernandoORCID,Montoya Dan,Mudigonda BhavanaORCID,Tedeschi ElisabettaORCID

Abstract

The power take-off (PTO) of a wave energy converter (WEC) converts mechanical power extracted from the waves into electrical power. Increasing PTO performance under several operational conditions is therefore essential to reduce the levelized cost of energy of a given wave energy concept and to achieve higher levels of technology readiness. A key task in the WEC design will then be the holistic assessment of the PTO performance in combination with other subsystems. It is hence important that WEC designers are aware of the different modeling options. This paper addresses this need and presents two alternative wave-to-wire modeling approaches based on a 250 kW modular electromechanical PTO coupled to an oscillating wave surge converter (OWSC) device. The first is a detailed and accurate offline model. The second model is a simplified and faster version of the first, being adequate for rapid analyses and real-time (RT) simulation. The paper presents the benchmarking of the offline model against the RT model and the hardware-in-the-loop (HIL) tests of the PTO. The normalized root-mean-square error (NRMSE) is considered as a quantitative indicator for the measurement of real-time and HIL test results against the offline simulation. Results show that the dynamics of the offline model are well represented by the RT model with execution times up to 10 times faster. The offline model also depicts well the behavior observed in the HIL tests with the NRMSE values for the PTO position, velocity, and force above 0.90, which shows the HIL test results replicates with fidelity the dynamic behavior of the complete model. Meaningful differences are however present and highlighted in this paper. An understanding of the advantages and drawbacks of these three approaches is fundamental to properly design a WEC during its project cycle and validate PTO concepts with a certain level of simplification.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference28 articles.

1. Committing to Climate-Neutrality by 2050: Commission Proposes European Climate Law and Consults on the European Climate Pact, 2020.

2. Communication COM(2020) 741 Final. An EU Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future, 2020.

3. Ocean Energy Strategic Roadmap 2016: Building Ocean Energy for Europe. In Proceedings of the Ocean Energy Europe 2016 Conference & Exhibition. 2016.

4. Strategic Research Agenda for Ocean Energy, 2016.

5. Strategic Research and Innovation Agenda for Ocean Energy, 2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3