Numerical Study of Influences of Onshore Wind on Hydrodynamic Processes of Solitary Wave over Fringing Reef

Author:

Guo L.,Qu K.ORCID,Huang J. X.,Li X. H.

Abstract

Many post-disaster surveys have reported on the natural function and effectiveness of fringing reef in preventing the shoreline from the inundation caused by severe weather events. Prior studies mainly focus on the wave propagating, transforming, and breaking on the fringing reefs by assuming that ocean waves propagate in an ideal environment where the wind is absent. However, in the real severe ocean environment, huge surges and waves always occur simultaneously with the strong winds. The wave profile can be easily reshaped by the strong winds, which can also significantly affect the way that ocean waves propagate on the fringing reefs. Therefore, it is necessary to study the hydrodynamics of fringing reefs under the combined action of wind and waves. To study the influences of the onshore wind on the hydrodynamics of solitary wave on the fringing reef, the finite volume method is applied to solve the governing equations of two-phase incompressible flow and a high-resolution numerical wind-wave tank is established in this study. Effects of several main factors are analyzed in detail. The research results show that the onshore wind can significantly increase the maximum wave runup height (maximum by 38.49%) and decrease the wave reflection coefficient of solitary wave (maximum by 8.66%). It is hoped that the research results of this study can enhance the understandings on the hydrodynamics of ocean waves on the fringing reefs during severe weather events.

Funder

Natural Science Foundation of Hunan Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3