Abstract
The design of new oxide compounds that can be used as oxygen- or proton-conducting electrolytes for solid oxide fuel cells is actively in progress. Despite the intensive research activities regarding electrolytes with perovskite/fluorite structures, the search for other structural alternatives is of paramount importance. In this study we focus on a novel material with significantly improved properties for the electrochemical purposes. The two-layered BaNd2In2O7 perovskite with a Ruddlesden–Popper structure was investigated as a protonic conductor for the first time. In detail, its local structure, water uptake, and the ionic (O2−, H+) conductivity were comprehensively studied. The nature of rare-earth elements (M = La, Nd) in the structure of BaM2In2O7 on the structural and transport properties was revealed. The presented analysis showed that the composition of BaNd2In2O7 is nearly pure proton conductor below 350 °C. This work opens up a new way in the design of protonic conductors with double-layered perovskite structure.
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献