Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts

Author:

Hu Sen1,Xiang Cuili2,Zou Yongjin12ORCID,Xu Fen2ORCID,Sun Lixian12ORCID

Affiliation:

1. School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO4/NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo4/NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo4/NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm−2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.

Funder

Guangxi Natural Science Foundation

National Natural Science Foundation of China

Guangxi Bagui Scholar Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3