Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework

Author:

Lin Yu-PinORCID,Mukhtar Hussnain,Huang Kuan-Ting,Petway Joy R.,Lin Chiao-Ming,Chou Cheng-FuORCID,Liao Shih-Wei

Abstract

Real-time identification of irrigation water pollution sources and pathways (PSP) is crucial to ensure both environmental and food safety. This study uses an integrated framework based on the Internet of Things (IoT) and the blockchain technology that incorporates a directed acyclic graph (DAG)-configured wireless sensor network (WSN), and GIS tools for real-time water pollution source tracing. Water quality sensors were installed at monitoring stations in irrigation channel systems within the study area. Irrigation water quality data were delivered to databases via the WSN and IoT technologies. Blockchain and GIS tools were used to trace pollution at mapped irrigation units and to spatially identify upstream polluted units at irrigation intakes. A Water Quality Analysis Simulation Program (WASP) model was then used to simulate water quality by using backward propagation and identify potential pollution sources. We applied a “backward pollution source tracing” (BPST) process to successfully and rapidly identify electrical conductivity (EC) and copper (Cu2+) polluted sources and pathways in upstream irrigation water. With the BPST process, the WASP model effectively simulated EC and Cu2+ concentration data to identify likely EC and Cu2+ pollution sources. The study framework is the first application of blockchain technology for effective real-time water quality monitoring and rapid multiple PSPs identification. The pollution event data associated with the PSP are immutable.

Funder

Council of Agriculture

National Taiwan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3