Abstract
In this work, steady-state droplet size distributions in a DN300 stirred batch vessel with a Rushton turbine impeller are investigated using an insertion probe based on the telecentric transmitted light principle. High-resolution droplet size distributions are extracted from the images using a convolutional neural network for image-analysis in order to investigate the influence of impeller speed and phase fraction (up to 50 vol.-%). In addition, Sauter mean diameters were calculated and correlated with two semi-empirical approaches, while the standard approach only accomplished 5.7% accuracy, and the correlation of Laso et al. provided a relative mean error of 4.0%. In addition, the correlated exponent in the Weber number was fitted to the experimental data of this work yielding a slightly different value than the theoretical (−0.6), which allows a better representation of the low coalescence tendency of the system, which is usually neglected in standard procedures.
Funder
Deutsche Forschungsgemeinschaft
Nanokat, Federal State of Rhineland-Palatinate
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献