Abstract
This study developed an automated temperature measurement and monitoring platform for dairy cattle. The platform used the YOLO V3-tiny (you only look once, YOLO) deep learning algorithm to identify and classify dairy cattle images. The system included a total of three layers of YOLO V3-tiny identification: (1) dairy cow body; (2) individual number (identity, ID); (3) thermal image of eye socket identification. We recorded each cow’s individual number and body temperature data after the three layers of identification, and carried out long-term body temperature tracking. The average prediction score of the recognition rate was 96%, and the accuracy was 90.0%. The thermal image of eye socket recognition rate was >99%. The area under the receiver operating characteristic curves (AUC) index of the prediction model was 0.813 (0.717–0.910). This showed that the model had excellent predictive ability. This system provides a rapid and convenient temperature measurement solution for ranchers. The improvement in dairy cattle image recognition can be optimized by collecting more image data. In the future, this platform is expected to replace the traditional solution of intrusive radio-frequency identification for individual recognition.
Funder
Ministry of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献