Abstract
Staphylococcus bacteria are ubiquitous microorganisms. They occur in practically all environments. They also show the ability to colonize the skin and mucous membranes of humans and animals. The current trend is to look for new natural factors (e.g., plant extracts rich in polyphenols) limiting the growth of undesirable bacteria in food and cosmetics or use as an adjunct in antibiotic therapy. The aim of this study was to evaluate the effect of extracts from Rosa rugosa Thunb. on the antagonistic properties of selected lactic acid bacteria strains in relation to Staphylococcus spp. isolates. The biological material consisted of seven strains of lactic acid bacteria (LAB) and seven strains of bacteria of the Staphylococcus genus. The anti-staphylococcal properties of the Rosa rugosa Thunb. pomace extracts (the tested extracts were characterized by a high content of polyphenols, namely 8–34 g/100 g DM/dm) were tested using the well method. The conducted research showed that the pomace extracts of the pseudo-fruit (Rosa rugosa Thunb.) had the ability to inhibit the growth of Staphylococcus spp. bacteria. The minimum concentration of polyphenols inhibiting the growth of staphylococci was in the range of 0.156–0.625 mg/mL. The conducted research showed that combined lactic acid bacteria and extracts from the pomace from the pseudo-fruit Rosa rugosa Thunb. (LR systems) may be factors limiting the growth of Staphylococcus spp. bacteria. As a result of the research, two-component antagonist systems consisting of LAB cultures and extracts from Rosa rugosa Thunb. pomace were developed, which effectively limited the growth of the test strains of Staphylococcus spp. In 41% of all tested cases, the zone of inhibition of growth of bacteria of the genus Staphylococcus spp. after the use of two-component antagonist systems was higher than that as a result of the control culture (without the addition of extracts).
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献