Selective Laser Sintering Induced Residual Stresses: Precision Measurement and Prediction

Author:

Impey Susan,Saxena PrateekORCID,Salonitis KonstantinosORCID

Abstract

Additive Manufacturing presents unique advantages over traditional manufacturing processes and has the potential to accelerate technical advancement across multiple sectors, permitting far greater freedom in design than conventional manufacturing. However, one barrier which blocks wide adoption is residual stresses, which could seriously affect the materials’ behaviour during and after production. Selective laser sintering (SLS), a process with high energy input to the workpiece material, induces high temperature gradients, further affecting the final residual stress distribution. Within the present paper, three different methods for the assessment of the residual stresses’ distribution are presented and compared: a non-destructive method based on neutron diffraction, a destructive method known as the contour method, and a theoretical approach based on Finite Element Analysis. The aim is to examine the suitability and reliability of the application of these methods in predicting residual stresses distribution in additive manufacturing-built parts.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3