Changes in Soil Chemistry and Microbial Communities in Rhizospheres of Planted Gastrodia elata on a Barren Slope and under a Forest

Author:

Xie Xia1,Shi Rui1ORCID,Yan Xinru1,Zhang Ao2,Wang Yonggui1,Jiao Jinlong1,Yu Yang2,Horowitz Abraham Rami3,Lu Jincai2,He Xiahong1

Affiliation:

1. Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China

2. School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China

3. Katif Research Center, Ministry of Science and Technology, Sedot Negev, 85200, Israel

Abstract

Continuous cropping of the important achlorophyllous medicinal orchid Gastrodia elata Blume causes an imbalance in soil microecology leading to soil-borne diseases. However, the impacts on different land covers remain largely unknown. Hence, this study aimed to investigate changes in the soil nutrient composition and the global microbial community structure in rhizospheres of G. elata cultivated on a barren slope (HPGJ) and under a forest (LXT) using integrated shotgun metagenomics and an analysis of soil chemical properties. High-throughput sequencing revealed an increase in the abundance of Proteobacteria, Actinobacteria, Mucoromycota, Basidiomycota, and Ascomycota, which drive N- and C-cycling genes in HPGJ and LXT. Notably, the fungal community was significantly improved in the HPGJ (from 0.17% to 23.61%) compared to the LXT (from 0.2% to 2.04%). Consequently, mineral cycling was enhanced in the HPGJ, resulting in a more improved soil nutrient composition than in the LXT. The soil chemical properties analysis unveiled a significant increase in the contents of the total nitrogen, NO3−-N, organic matter, total carbon, organic carbon, total sulfur, and total phosphorus in the HPGJ, while no changes were recorded in the LXT. It was noteworthy that the abundance of pathogenic microorganisms increased significantly in the HPGJ compared to the LXT. Our results provide supporting data to optimize G. elata cultivation on slopes.

Funder

Major Science and Technology Project of Yunnan

China Agriculture Research System of MOF & MARA

National Key R&D Program of China

National Natural Science Foundation of China

Major Science and Technology Project of Kunming

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3