Representing Carbon Dioxide Transport and Storage Network Investments within Power System Planning Models

Author:

Brown Maxwell12,Irish Matthew3,Steinberg Daniel2,Moss Tamar2,Cherney Daniel P.4ORCID,Shultz Travis5,Morgan David6,Zoelle Alexander6,Schmitt Thomas5

Affiliation:

1. Department of Economics and Business, Colorado School of Mines, Engineering Hall, 816 15th St, Golden, CO 80401, USA

2. National Renewable Energy Laboratory, Golden, CO 80401, USA

3. Our Next Energy, Novi, MI 48377, USA

4. ExxonMobil Technology and Engineering Company, Spring, TX 77389, USA

5. National Energy Technology Laboratory, Morgantown, WV 26505, USA

6. National Energy Technology Laboratory, Pittsburgh, PA 15236, USA

Abstract

Carbon dioxide (CO2) capture and storage (CCS) is frequently identified as a potential component to achieving a decarbonized power system at least cost; however, power system models frequently lack detailed representation of CO2 transportation, injection, and storage (CTS) infrastructure. In this paper, we present a novel approach to explicitly represent CO2 storage potential and CTS infrastructure costs and constraints within a continental-scale power system capacity expansion model. In addition, we evaluate the sensitivity of the results to assumptions about the future costs and performance of CTS components and carbon capture technologies. We find that the quantity of CO2 captured within the power sector is relatively insensitive to the range of CTS costs explored, suggesting that the cost of CO2 capture retrofits is a more important driver of CCS implementation than the costs of transportation and storage. Finally, we demonstrate that storage and injection costs account for the predominant share of total costs associated with CTS investment and operation, suggesting that pipeline infrastructure costs have limited influence on the competitiveness of CCS.

Funder

National Renewable Energy Laboratory

ExxonMobil Technology and Engineering Company

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3