Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants

Author:

Douvartzides Savvas1,Tsiolikas Aristidis12,Charisiou Nikolaos3ORCID,Souliotis Manolis4ORCID,Karayannis Vayos4,Taousanidis Nikolaos5

Affiliation:

1. Laboratory of Internal Combustion Engines, Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece

2. Design and Manufacturing Laboratory, Department of Mechanical Engineering, University of Thessaly, 43100 Karditsa, Greece

3. Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece

4. Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece

5. Centre of Renewable and Alternative Energy Forms and Rational Use of Energy, Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece

Abstract

The cogeneration of power and heat was investigated for Biomass Boiler–Organic Rankine Cycle (BB–ORC) plants with the characteristics of typical units, such as the 1 MWel Turboden ORC 10 CHP. The thermodynamic analysis of the ORC unit was undertaken considering forty-two (42) dry and isentropic candidate pure working fluids. Only subcritical Rankine cycles were considered, and the pinch point temperature differences for the evaporation and condensation heat exchangers were kept constant at 10 °C in all cases. The study provides an original and unique screening of almost all pure working fluids that are considered appropriate in the literature under the same operation and optimization conditions and compiles them into a single reference. In its conclusions, the study provides useful fluid selection and design guidelines, which may be easily followed depending on the optimization objective of the ORC designer or operator. In general, hydrocarbons are found to lie in the optimum middle range of the fluid spectrum, between the siloxanes that maximize the production of mechanical power and the refrigerants that maximize the production of heat. Specific hydrocarbon fluids, such as cyclopentane, heptane, hexane, benzene, and toluene, are found as rational options for maximum mechanical efficiency when operating with practically feasible condensation pressures between 10 and 200 kPa. At condensation pressures below 10 kPa, ethylbenzene, o-xylene, m-xylene, p-xylene, and nonane are also found to be feasible options. Finally, cyclopentane, hexane, and MM (hexamethyldisiloxane) are selected as the most appropriate options for cogeneration plants aiming simultaneously at high mechanical power and maximum temperature water production.

Funder

Development of New Innovative Low Carbon Footprint Energy Technologies to Enhance Excellence in the Region of Western Macedonia

Competitiveness, Entrepreneurship and Innovation

Greece and the European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3