Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank

Author:

Saniga MetodORCID,de Boutray Henri,Holweck Frédéric,Giorgetti AlainORCID

Abstract

We study certain physically-relevant subgeometries of binary symplectic polar spaces W(2N−1,2) of small rank N, when the points of these spaces canonically encode N-qubit observables. Key characteristics of a subspace of such a space W(2N−1,2) are: the number of its negative lines, the distribution of types of observables, the character of the geometric hyperplane the subspace shares with the distinguished (non-singular) quadric of W(2N−1,2) and the structure of its Veldkamp space. In particular, we classify and count polar subspaces of W(2N−1,2) whose rank is N−1. W(3,2) features three negative lines of the same type and its W(1,2)’s are of five different types. W(5,2) is endowed with 90 negative lines of two types and its W(3,2)’s split into 13 types. A total of 279 out of 480 W(3,2)’s with three negative lines are composite, i.e., they all originate from the two-qubit W(3,2). Given a three-qubit W(3,2) and any of its geometric hyperplanes, there are three other W(3,2)’s possessing the same hyperplane. The same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of W(5,2) is found to host particular sets of seven W(3,2)’s, each of them being uniquely tied to a Conwell heptad with respect to the quadric. There is also a particular type of W(3,2)’s, a representative of which features a point each line through which is negative. Finally, W(7,2) is found to possess 1908 negative lines of five types and its W(5,2)’s fall into as many as 29 types. A total of 1524 out of 1560 W(5,2)’s with 90 negative lines originate from the three-qubit W(5,2). Remarkably, the difference in the number of negative lines for any two distinct types of four-qubit W(5,2)’s is a multiple of four.

Funder

Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky

ISITE-BFC

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. Multiple Qubits as Symplectic Polar Spaces of Order Two;Saniga;Adv. Stud. Theor. Phys.,2007

2. On the Pauli Graph of N-Qudits;Planat;Quantum Inf. Comput.,2008

3. Factor-Group-Generated Polar Spaces and (Multi-)Qudits

4. The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs

5. Geometric constructions over C and F2 for quantum information;Holweck,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3