Author:
Yamamoto Kazuhiro,Akai Yusei,Hayashi Naoki
Abstract
In this study, we focused on a fuel reforming technology by applying ultrafine oxygen bubble as the pretreatment for in-cylinder combustion s. It is assumed that oxygen is dissolved in the droplets in the form of ultrafine bubbles, and released into air when the decane fuel evaporates. A numerical simulation of the spray combustion was conducted using a PSI-CELL model. We changed the oxygen concentration of the droplets, the initial droplet diameter, and the number of injected droplets per unit time to discuss the ignition time and the temperature field. When there is no oxygen in the fuel droplet, most of the flames are diffusion flames. On the other hand, when oxygen exists in the droplets, premixed flames are formed at the upstream edge of the fuel spray. Due to the effects of ultrafine oxygen bubbles, the ignition time is shortened. However, on the condition that there is only a small amount of oxygen in the fuel droplets, as more fuel is supplied by enlarging the droplet diameter or increasing the number of injected droplets per unit time, the ignition time increases. Thus, when discussing ignition time, the balance between evaporated fuel and oxygen in the gas phase is important.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献