Numerical Simulation of Spray Combustion with Ultrafine Oxygen Bubbles

Author:

Yamamoto Kazuhiro,Akai Yusei,Hayashi Naoki

Abstract

In this study, we focused on a fuel reforming technology by applying ultrafine oxygen bubble as the pretreatment for in-cylinder combustion s. It is assumed that oxygen is dissolved in the droplets in the form of ultrafine bubbles, and released into air when the decane fuel evaporates. A numerical simulation of the spray combustion was conducted using a PSI-CELL model. We changed the oxygen concentration of the droplets, the initial droplet diameter, and the number of injected droplets per unit time to discuss the ignition time and the temperature field. When there is no oxygen in the fuel droplet, most of the flames are diffusion flames. On the other hand, when oxygen exists in the droplets, premixed flames are formed at the upstream edge of the fuel spray. Due to the effects of ultrafine oxygen bubbles, the ignition time is shortened. However, on the condition that there is only a small amount of oxygen in the fuel droplets, as more fuel is supplied by enlarging the droplet diameter or increasing the number of injected droplets per unit time, the ignition time increases. Thus, when discussing ignition time, the balance between evaporated fuel and oxygen in the gas phase is important.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3