Effect of Sand Co-Presence on CrVI Removal in Fe0-H2O System

Author:

Gheju Marius1ORCID,Balcu Ionel2

Affiliation:

1. Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan Nr. 6, 300223 Timisoara, Romania

2. National Institute for Research and Development in Electrochemistry and Condensed Matter, Str. Dr. Aurel Paunescu Podeanu Nr. 144, 300587 Timisoara, Romania

Abstract

The aim of the present study was to provide new knowledge regarding the effect of non-expansive inert material addition on anionic pollutant removal efficiency in Fe0-H2O system. Non-disturbed batch experiments and continuous-flow-through column tests were conducted using CrVI as a redox–active contaminant in three different systems: “Fe0 + sand”, “Fe0 only” and ”sand only”. Both experimental procedures have the advantage that formation of (hydr)oxide layers on Fe0 is not altered, which makes them appropriate proxies for real Fe0-based filter technologies. Batch experiments carried out at pH 6.5 showed a slight improvement of CrVI removal in a 20% Fe0 system, compared to 50, 80 and 100% Fe0 systems. Column tests conducted at pH 6.5 supported results of batch experiments, revealing highest CrVI removal efficiencies for “Fe0 + sand” systems with lowest Fe0 ratio. However, the positive effect of sand co-presence decreases with increasing pH from 6.5 to 7.1. Scanning electron microscopy—energy dispersive angle X-ray spectrometry and X-ray diffraction spectroscopy employed for the characterization of Fe0 before and after experiments indicated that the higher the volumetric ratio of sand in “Fe0 + sand” system, the more intense the corrosion processes affecting the Fe0 grains. Results presented herein indicate the capacity of sand at sustaining the efficiency of CrVI removal in Fe0-H2O system. The outcomes of the present study suggest that a volumetric ratio Fe0:sand = 1:3 could assure not only the long-term permeability of Fe0-based filters, but also enhanced removal efficiency of CrVI from contaminated water.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3